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Abstract. We investigate a result for the effective diffusivity of panicles in a random gradient 
flow, previously obtained by an intuitively plausible renormalization-group argument and very 
accurately verified by numerical simulation. We show that, to two-loop order, the result is 
consistent with a direct perturbation theory calculation. To the Same order in perfurbation 
theory we also derive a 'Ward identity' which g u m t e e s  the equality of the ratio of the 
effective diffusivityto the renormalized coupling with the ratio of the corresponding bare values. 
The invariance of this ratio under renormalization was an important feature of the successful 
renormalization-group calculation. 

1. Introduction 

The advective diffusion of Scalar fields in  random velocity fields has been extensively 
studied with particular emphasis on qualitative behaviour such as anomalous diffusion and 
its associated exponents (see, for example, [I] and references within). However even 
situations giving rise to normal diffusion are of interest. The evaluation of the associated 
long-range effective diffusivity in terms of the statistical properties of the random flow 
presents a challenging problem with its own new technical difficulties [2,3]. In a previous 
paper [4] we derived, using a physically plausible renormalization-group technique, a simple 
formula for the effective diffusivity K~ of particles subject to molecular diffusivity KO and 
transport by a gradient velocity field hoV@(s) .  The result, in three dimensions, is 

where 

- z') = (@(s)@@')). (2) 
The same result has been obtained by Deem and Chandler [5] on the basis of the same style 
of renormalization-group argument. 

This result agrees extremely well with numerical simulations [4] for a parameter range 
0 < AO/KO c 2 which corresponds to a variation in K~ by a factor of - 3. A small departure 
from the prediction of (1) from our numerical simulations does appear at the upper end of 
the parameter range investigated, ~ / K O  -,2, the values of K, being slightly higher than 
those predicted by (1). However, further investigation has lead us to ascribe this departure 
to simulation difficulties in the large disorder regime. With increasing disorder two types 
of difficulty for the numerical simulation emerge: 
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(i) The onset of linear time dependence for the dispersion of the particles occurs later and 
later. Measurement of the slope for the purposes of estimating K* is likely then to lead 
to values that are a little too large. 

(ii) The value of K~ is strongly influenced by trapping at the extrema of the fluctuating 
background field 4(1) where the velocity vanishes. The necessary practical restriction 
to a finite number of (random) Fourier modes in our simuIation of this field 16, 71 leads 
to a rounding off of these extrema. Again one intuitively expects this deficiency to lead 
to an overestimate of K,. 

Therefore we have experimented both with increasing the simulation time and increasing 
the number of Fourier modes in the Gaussian field construction. These adjustments move 
the value of K ~ ,  measured in the simulations, down towards that given by (1). 

This weight of evidence leads us to believe that (1) is an exact result. The derivation 
using the renormalization group is physically very plausible but we have not, so far, been 
able to cast the argument in a completely rigorous form. It is therefore of great interest 
to see to what extent the result can be derived by more conventional means. In this paper 
we perform the perturbative calculation of K, to two-loop order. The results are indeed 
consistent with the predictions of the renormalization group. Furthermore we propose a Ward 
identity, verified to two-loop order, which guarantees that the ratio of the bare diffusivity 
to the bare vertex coupling constant is equal to the ratio of the two corresponding dressed 
quantities. The constancy of this ratio,is an important feature of our renormalization-group 
argument. So far, higher-order calculations have proved intractable. 
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2. Green's functions 

The equation satisfied by the Green's function in a velocity field u(z) = hoV@(z) is 

(KoVz - hoV@(Z). V)G(Z, 2') = -S(Z - d) . (3) 
After averaging over the random ensemble of flows we obtain an effective Green's function 

B(a: - 
1 

4 ~ ~ ~ 1 2  - d[ . z') = (G(z, z')} - for (4) 

where K~ is the effective diffusivity that controls the long-range dispersal of the scalar field. 
The Fourier transform of G(z - 5') is 

8(k) = [Kok' - x(k)]-'  . 
At smdl k the irreducible two-point function Z ( k )  satifies 

E(k) - ak2 

with the result that the effective long-range diffusivity is 

For the purposes of simulation we assumed that 

with 
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The normalization is chosen so that 
( ( d m j ' )  = 1. 

In our simulations we set ko = 1. 

3. Graphical rules for perturbation theory 

It is convenient to associate the perturbation terms with diagrams. The Feynman rules for 
the diagrammatic perturbation expansion are as follows: 
(ij The sum of the inwardly flowing wavevectors at each vertex is zero. 
(ii) Each full curve carries a factor of 1/Kok2. 
(iiij Each loop wavevector q is integrated with a factor d ' q / ( Z ~ ) ~ .  
(iv) Each vertex of the form of figure 1 carries a factor ho ( k  + q) . q. 
(v) Each broken line carries a factor D (4). 

*q  - 
+ Figure 1. Vertex diagram. k 

4. One-loop contributions 

The one-loop contribution to C ( k )  is associated with the diagram in figure 2. According 
to the above rules it is 

\ 

k + q  Figure 2. One-loop contribution to L. 

In order to give the flavour of the manipulations we use we explain this one-loop case in 
detail. We first re-write the numerator using the identity 

( I C  + 9) * 4 = [ ( k  + q)' - k * ( k +  d]  . (12) 
We then have 

The first term integrates to zero. We wish to evaluate the second term only to O(k*). 
Because of the explicit factors of k in the integrand we can set k = 0 everywhere else. 
The result is 
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This is easily evaluated as 

This tells us immediately that the one-loop contribution to U is 

yielding the standard one-loop result 

This is of course consistent to o@;) with (I). 

5. 'bo-loop contributions 

The two two-loop diagrams contributing to B(h) are shown in figures 3(a) and (b ) .  From 
3(u) we obtain a term 

and from 3(b) the term 

In equation (18) we again use the identity in (12) with the result 
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Applying a similar manipulation to (19) we find 

When the two terms are combined we encounter a contribution to the integrand for 
C(*)(k) = C(2a)(k) + C(zb)(k) of the form 
(k + 4 +P) *~(P + q) (k + q)  q , 

The first of these terms is odd in p and so integrates to zero. The second term can be 
treated in the obvious way to O(kz) with the result 

The first and third terms in the integrand may be combined to produce a term that is odd in 
p and which therefore integrates to zero. The middle term can be symmetrized for p and 
q to yield the result 

leading to 

The outcome for K~ is 

This result is identical to (1) to O(A:). 
 taking into account the numerical accuracy of the result it seems reasonable to conjecture 

that the perturbation series will produce (1) to all orders in Ao. We have examined the 
perturbation series at O(A$ but have found the corresponding terms rather intractable. 
Ultimately, however, it should be possible to verify that the predicted result emerges. 

6. ‘Ward’ identity 

One of the features of the renormalization-group calculation was the constancy, at each 
stage of the procedure, of the ratio K J A ~  = K O ~ A Q .  We propose here an identity, verified 
to two-loop order in perturbation theory, that shows such a result is to be expected. Any 
calculation that violates this requirement will be unsuccessful. 

An examination of the diagrams contributing to the complete vertex function shows that 
it must have the form 

V(q ,k ’ )  =qiK(4>IC’)~ (27) 
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where 
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K ( q ,  k') = Wij(q. k'lk,!. (28) 

From the requirement of rotational invariance it follows that 

Wij(q,  k') = A ( q ,  k')Sij + B ( q ,  k')kiki + C ( q .  k')kiqj + D ( q ,  k')qikj + F ( q ,  k')qiqj . 
(29) 

It is both natural and consistent with the renormalization-group calculation, to define the 
renormalized coupling so that it determines the small wavenumber behaviour of the vertex. 
That is, we will choose the effective coupling A, so that 

h, = A ( 0 , O ) .  (30) 
It follows that for small wavenumber 

V(q,  k') N h , q .  k' . (31) 
An examination of the diagrams contributing to B ( k )  shows that on differentiation with 

respect to ki there are two types of contribution. The first type corresponds to the terms 
that arise from the differentiation of the full line propagators in each diagram. They sum 
up to yield a term 

--2(~o/ha)[K(O, k) - hokil. (32) 

The second type arises from the differentiation of the vertex factors in the diagrams. We 
will denote this contribution by Ui(k).  For small wavevector k ,  it follows from the previous 
paragraph that 

Vj(0, k )  N h,ki. (33) 
We assert that in the same regime 

Ui(R) - 0 ( k * ) k i .  (34) 
This assertion is demonsQated below in perturbation theory to two-loop order. 

We have then the 'Ward' identity 

(35) 
a --C(k) = -2(~o/ho)[V;.(O, k )  - hok;] t U j ( k ) .  a ki 

For small wavevector k this implies 

2 ~ k i  -Z(Ko/ho)h,ki + 2Koki + O(k2)ki . 
We have then, on taking the limit k --f 0, the result 

. ,  
Ke = ( K O / ~ O ) &  

which exhibits the constancy of the ratio referred to above. 

7. Perturbative analysis of the Ward identity 

From (1 1) we see that 
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The first term is just the one-loop contribution to - 2 ( ~ o / b 0 ) 5 ( 0 ,  k ) .  The second term is 
the corresponding contribution to Ui(k) .  It is easily evaluated to yield 

Clearly U]”(k) - O(k2) ki as required. 
The two-loop graphs can be analysed similarly. The resulting two-loop contributions to 

-2 (~0 /h0)&(0 ,  I C )  are easily identified and require no explicit calculation. The contributions 
to Ui(k) are 

where 

NjZb) = pi + 9) * q ( k  + P I  . q [ k  ‘P + (k +P+ 4) .PI 
+qi + P + 4) . P k  ‘P I(k + P) . Q + (k + 49 I Q1. (43) 

The easiest way to manipulate these expressions is to show that 

U/*”(k)ki + U y ) ( k ) k i  - O ( k 4 ) ,  (44) 

This is achieved using the same kind of methods employed above on two-loop graphs. 

8. Conclusions 

Prompted by the success of a renormalization-group calculation for the effective diffusivity 
of a particle subject to a gradient flow combined with molecular diffusivity we have analysed 
the problem to two loops in perturbation theory. We confirmed, to this order, that the 
renormalization-group calculation is indeed correct. The accuracy of the RG calculation 
in comparison with numerical simulations is such that we believe the result is true to 
much higher order and is probably exact. However, our attempts to examine three-loop 
perturbation theory was obstructed by the rather intractable nature of the terms encountered. 

We also showed, to two loops in perturbation theory, that a ‘Ward identity’ holds which 
guarantees that the ratio of the effective diffusivity to the effective vertex coupling strength 
is the same as that of the corresponding bare parameters. This was an important feature of 
the RC calculation. We believe that the Ward identity also holds exactly. It is an interesting 
technical challenge to prove these results hold for all orders of perturbation theory and are 
therefore exact. 
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